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Abstract

To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the
Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set
of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-
quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by
exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat
PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputa-
tion accuracy with 0.01� sequence coverage, which was slightly lower than the accuracy obtained using the 0.5� sequence coverage
(96.6%). Compared to Beagle, on average, PHG imputation was �3.5% (P-value < 2 � 10�14) more accurate, and showed 27% higher ac-
curacy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with indepen-
dent 2� GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction
with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing
PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of
linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic
mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher pro-
portion of genetic variance for heading date and meiotic crossover rate compared to previous studies.
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Introduction
For the last 10,000 years, intensive selection of bread wheat,
Triticum aestivum, created varieties adapted to diverse environ-
ments and cultivation practices (Balfourier et al. 2019; He et al.
2019; Walkowiak et al. 2020). Recent advances in crop genomics
and the availability of reference genomes have accelerated the
adoption of sequence-based genotyping technologies for studying
the genetics of agronomic traits (Nyine et al. 2019) and local adap-
tation (He et al. 2019; Juliana et al. 2019, 2020) and facilitated the
introduction of genomics-assisted breeding strategies into wheat
improvement pipelines (Poland and Rife 2012; Isidro et al. 2015).
However, the limited genome coverage provided by these geno-
typing technologies does not support the exploration of the entire
range of genetic effects conferred by all variants, limiting the util-
ity of the developed genomic diversity and functional genomics
resources for understanding genome-to-phenome connections.

The large size (17 Gb) and complexity of the wheat genome
present a substantial challenge for sequence-based analysis of
genetic diversity. Alignment of short sequence reads to the wheat
genome is complicated by high levels of sequence redundancy
resulting from two rounds of recent whole genome duplication
(IWGSC 2018), and the recent propagation of transposable ele-
ments comprising nearly 90% of the genome (Wicker et al. 2018).
Therefore, the efforts of the wheat research community were fo-
cused primarily on sequencing complexity-reduced genomic li-
braries produced by either enzymatic digests or by targeted
sequence capture. These efforts have resulted in a detailed
description of the population-scale haplotypic diversity in the
low-copy genomic regions in large sets of genetically and geo-
graphically diverse wheat lines and breeding populations (He
et al. 2019; Juliana et al. 2019; Pont et al. 2019). While these resour-
ces have been useful for genotype imputation in populations gen-
otyped using either SNP-based arrays or genotyping-by-
sequencing (GBS) methods (Jordan et al. 2015; Shi et al. 2017;
Juliana et al. 2019; Nyine et al. 2019), the relatively small number
of shared markers between the reference and inference popula-
tions limits the number of imputed genotypes, thus diminishing
the utility of genotype imputation in wheat genetic studies and
breeding.

High-quality reference genomes and a reduction in the cost of
sequencing presented opportunities for the characterization of
genetic diversity by direct sequencing of either whole genomes or
genomic regions targeted by sequence capture (Malmberg et al.
2018; He et al. 2019; Walkowiak et al. 2020). While these sequence-
based genotyping approaches generate unbiased information
about the genetic variants of various frequency classes and geno-
mic locations, large-scale population sequencing of species with
large genomes, including many important agricultural crops,
remains costly. This issue has been addressed by combining low-
coverage sequencing of whole genomes with the prediction of
missing genotypes using imputation tools, thereby increasing the
power of association mapping and facilitating the detection of
causal variants (Davies et al. 2016; Das et al. 2018; Rubinacci et al.
2021).

Recently, a novel strategy referred to as Practical Haplotype
Graph (PHG) was proposed to improve the efficiency of sequence-
based genotyping data storage and imputing genotypes in low-
coverage sequencing datasets (Jensen et al. 2020; Valdes Franco
et al. 2020). The PHG is capable of storing sequencing data gener-
ated using diverse genotyping technologies as a graph of haplo-
types of founder lines and is used for predicting missing
genotypes in populations characterized by various sequence- or

array-based genotyping strategies. By reducing the constraints
associated with large-scale sequencing data storage, processing,
and utilization, this tool is another step toward leveraging the
existing community-generated genomic diversity resources in
breeding and research applications. We used skim-seq, whole-
exome capture, GBS, and array-based genotyping datasets gener-
ated by the USDA-NIFA WheatCAP to develop a Wheat PHG
database and evaluate its performance for genotype imputation
in wheat lines of different levels of relatedness and different
depths of genome coverage.

Materials and methods
The purpose of this paper is to assess the practicality and effec-
tiveness of imputation using the Practical Haploytpe Graph (PHG)
database tool in allohexaploid wheat with the complex genome.
Our study combines five datasets that were created using differ-
ent sequencing approaches. A summary table describing the
datasets and their usage is provided in Supplementary Table S1.

Datasets
WC65:
The primary dataset used in this study includes 65 wheat acces-
sions and breeding lines that were subjected to whole exome cap-
ture as part of the WheatCAP, henceforth referred to as WC65.
Many of these lines are used as parents in the US university/
academia-associated wheat breeding programs, and information
about these lines is found in Supplementary Table S2.

Sequencing library prep for WC65

DNA was extracted from the leaves of 2-week seedlings grown
under greenhouse conditions. DNA was extracted using Qiagen
DNeasy kit following the manufacturer’s protocol. DNA was
quantified with Picogreen (Sage Scientific) and wheat exome cap-
ture was performed on each sample targeting the non-redundant
low-copy portion of the genome. Briefly, wheat exome captures
designed in collaboration with Nimblegen targeted 170 Mb of se-
quence covering about 80,000 transcripts (Krasileva et al. 2017).
The barcoded genomic libraries were pooled at 12- or 96-plex lev-
els, and sequenced on NextSeq (Kansas State University (KSU)
Integrated Genomics Facility) and/or NovaSeq (Kansas University
Medical Center) instrumentation using 2 � 150 bp read runs to
produce sequence data providing about 30� coverage of the
exome capture target space.

Data processing of WC65

The quality of sequence reads was assessed using NGSQC toolkit
v.2.3.3 (Patel and Jain 2012). The sequence reads were aligned to
the wheat reference genome RefSeq v.1.1 (IWGSC 2018) using
HISAT2 (Kim et al. 2015) retaining only uniquely mapped reads.
The resulting alignments were processed using the GATK pipe-
line (McKenna et al. 2010) to generate a genome variant call file
(g.vcf format) for each accession. These g.vcf files were used to
populate the PHG database (see below). The PHG pipeline
exported a variant call file (.vcf format), containing 1,473,670 var-
iable sites, which was subsequently used for diversity analyses,
and to assess the accuracy of imputation using both the PHG and
Beagle5.0 (see below).

Diversity analysis on WC65

Diversity statistics (p and Tajima’s D) were calculated using
TASSEL v5.2.65 (Bradbury et al. 2007) in sliding windows of 2000
SNPs per window stepping 1000 SNPs at a time. The identity-by-
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descent (IBD) segments were identified using Beagle v.4.1 with
the default parameters (Browning and Browning 2013), and con-
sidered to be significant at LOD � 3.0. Overlap between the IBD
segments was determined using the MultiIntersectBed tool of the
Bedtools suite v.2.26.0 (Quinlan and Hall 2010). Linkage disequi-
librium (LD) was determined using PLINK v.1.90b3.45 (Purcell
et al. 2007) by calculating the squared correlation coefficient r2 for
all possible pairwise combinations of SNP sites from the same
chromosomes.

DS75
The second dataset used in our study includes another set of US
breeding lines subjected to exome capture at KSU Integrated
Genomics Facility. Information about these lines is found in
Supplementary Table S2. This dataset was used to test the impu-
tation efficiency and accuracy of the PHG database at reduced ge-
nome coverage depths.

Sequencing Library prep for DS75

DNA was extracted from leaf tissue as stated above for the
WC65. The samples were subjected to whole exome capture and
sequenced on the NovaSeq (Kansas University Medical Center)
platform using 2 � 150 bp read runs, generating �30� depth of
coverage.

Data processing of DS75

To assess the effect of genome coverage depth on imputation ac-
curacy, we used seqtk (Li 2012) to generate three distinct down-
sampled datasets from the 170 Mb wheat exome capture data to
mimic 0.01� [5,667 paired-end (PE) reads per accession], 0.1�
(56,667 PE per accession), and 0.5� (283,333 PE reads per acces-
sion) depth of coverage for the DS75 breeding lines
(Supplementary Table S2). This set of DS75 breeding lines in-
cluded four lines (Duster, Overley, NuPlains, and Zenda), which
were also used to build the PHG database, and were part of the
WC65 dataset. For each low-coverage level, fastq files of the DS75
accessions were run through the PHG imputation pipeline step
(see PHG imputation below).

To impute using Beagle5.0 (Browning and Browning 2013) at
low-coverage levels (0.1� and 0.01�), fastq files of the DS75
accessions were aligned to the wheat reference genome RefSeq
v.1.1 (IWGSC 2018) using HISAT2 (Kim et al. 2015) retaining only
uniquely mapped reads. The resulting alignments were proc-
essed using the GATK pipeline (McKenna et al. 2010) and com-
bined to produce a vcf file at each coverage level, which were
used as the target files for Beagle imputation. Imputation of the
DS75 target panel was run using Beagle5.0 (Browning and
Browning 2013) with a window size of 75 Mb and overlap size of
5 Mb, and the WC65 variant data was used as the reference panel.
The imputed genotypes in the DS75 data generated using
Beagle5.0 and PHG were compared at each coverage level.

Imputation accuracy of DS75

To test the accuracy of imputation in the low-coverage datasets
from DS75, high coverage exome capture data generated for DS75
accessions were used to select a HQ-SNP dataset. The �30�
exome capture sequenced reads were aligned to RefSeq v.1.1
(IWGSC 2018) and variants called using the approaches described
above for the WC65 dataset. The raw GATK pipeline SNPs were
filtered using bcftools (Danecek et al. 2021) retain variants with mi-
nor allele frequency � 0.015 and missing data < 10%. Filtered
GATK variants were combined with the 90K genotyping data
(Wang et al. 2014), producing high-quality filtered variants

(henceforth, HQ-SNPs) that were used for assessing the accuracy
of the imputation for each accession.

The concordance of imputed genotypes was assessed in rela-
tion to the HQ-SNPs using a custom Perl script. The script
compares the SNP positions and alleles between the imputed and
HQ-SNP datasets for each accession, and divides the number of
matching genotype calls by the total number of overlapped geno-
type calls. On average, the estimates of accuracy were based on
nearly 550,000 genotype calls per accession for DS75. The impu-
tation accuracy in DS75 between the Beagle v.5.0 and PHG impu-
tation methods for 0.01� and 0.1� coverage levels was compared
using a paired t-test. At each coverage level, PHG imputation was
more accurate (0.01�: t¼ 9.59, P-value ¼ 1.9 � 10�14; 0.1�:
t¼ 19.06, P-value ¼ 2.0 � 10�16) than Beagle imputation.
Imputation accuracy comparisons between genomes and SNPs
with different minor allele frequencies (MAFs) were performed
using ANOVA from car and lme4 R packages.

GBS70
A GBS sequencing dataset using MspI-PstI digested DNA of 70
wheat accessions were sequenced using GBS and whole exome
capture, to check imputation accuracy on an independent GBS
dataset (Supplementary Table S2). These lines were not included
into the PHG database construction. An in silico digestion of wheat
genome RefSeq v.1.0 detected nearly 3 million PstI recognition
sites, of which 1.96 million are located within 250 bp of an MspI
recognition site (Bernardo et al. 2020), and given GBS sequencing
read lengths are 100 bp, we estimate the target size of GBS se-
quencing is 196 Mb. The majority (52 accessions) of these acces-
sions were sequenced at 2.5� coverage, while 18 accessions were
sequenced at a slightly lower coverage depth (�1� target space),
providing a chance to compare PHG imputation using GBS se-
quencing data providing different coverage depths of targeted
sites.

Data processing of GBS70

Raw fastq files (1 � 100 bp) were quality filtered, separated by
barcode, and barcodes trimmed from reads, as described (Jordan
et al. 2018). Trimmed fastq files were processed using the PHG im-
putation pipeline (see PHG imputation below).

Imputation accuracy of GBS70

The accuracy of PHG imputation was assessed by calculating
concordance between imputed genotypes and genotypes from
the HQ-SNP dataset. On average, the estimates of accuracy were
based on nearly 550,000 genotype calls per accession for GBS70.

NAMgbs
Previously generated GBS data (Jordan et al. 2018) based on MseI-
PstI-digested DNA (Saintenac et al. 2013) from the wheat nested
association mapping (NAM) population were used to test the im-
putation accuracy of the Wheat PHG. This dataset includes 2100
recombinant inbred lines (RILs) that represent a population of 28
families of 75 RILs each. The common parent, Berkut, and three
other NAM parental lines, including Dharwar Dry, PBW343, and
PI382150 (Supplementary Table S2), were used in the PHG con-
struction.

Data processing of NAMgbs

Fastq files (1 � 100 bp) were processed as previously described
(Jordan et al. 2018). On average, our dataset included 1.85 million
reads per accession, corresponding to �1� coverage of the PstI-
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MseI sites in the reference wheat genome. The fastq files were
processed using the PHG imputation pipeline (see below).

Imputation accuracy of NAMgbs

The concordance of imputed genotypes from the PHG pipeline
was assessed by comparing with the previously reported, high-
quality 90K iSelect genotyping data (Wang et al. 2014) generated
for the NAM population, and high-quality SNPs identified in the
NAM population. These high-quality SNPs were identified using
the same procedures applied for the DS75 lines, except for includ-
ing a post-GATK filtering step that retained only those SNPs that
segregate among the NAM parents, and have MAF > 0.015
(henceforth, HQ-NAM SNPs). On average, the estimates of accu-
racy in the NAMgbs dataset were based on nearly 5000 genotype
calls per accession. The comparisons of the imputation accuracy
between families where both parents were used to construct the
PHG database and families with only one parent represented in
the PHG database were performed using ANOVA.

NAMskim
Genomic libraries of low-coverage whole-genome skim sequenc-
ing (Malmberg et al. 2018) were prepared for 24 samples
(Supplementary Table S2) from one of the NAM families (Jordan
et al. 2018) using Illumina DNA Prep Kit along with the Illumina’s
Nextera CD adapters. Sequencing (2 � 150 bp) was performed on
the Illumina NextSeq platform (Kansas State University,
Integrated Genomics Facility) for an average of 6.1 million PE
reads per accession, which represents �0.1� genome coverage.

Data processing of NAMskim

Demultiplexed fastq files were quality trimmed and used for PHG
imputation (see PHG imputation below). The accuracy of PHG im-
putation was assessed by calculating the concordance of imputed
genotypes and genotypes from the HQ-NAM dataset. On average,
the estimates of accuracy were based on nearly 5000 genotype
calls per accession. Paired t-tests were used to compare the impu-
tation accuracy between NAMgbs and NAMskim for matching
accessions.

Wheat PHG database construction
The Wheat PHG database was built using PHG version 0.017.
Instructions for creating the PHG along with source code are lo-
cated with the PHG wiki: https://bitbucket.org/bucklerlab/practi
calhaplotypegraph/wiki/Home. The approaches and parameters
for constructing the Wheat PHG were discussed and developed
during two PHG workshops organized at Cornell University. The
first step of the PHG database construction is to create reference
ranges for data storage and variant imputation (Supplementary
Figure S1). In this case, “informative” reference ranges were cho-
sen by extending the high confidence gene model coordinates
from Chinese Spring RefSeq v.1.1 (IWGSC 2018) 500 bp in each di-
rection. Adjacent ranges were merged if the boundaries lie within
500 bp from each other. This resulted in a final set of 106,484 in-
formative reference ranges across the RefSeq v.1.1, while
the remaining intergenic ranges were considered less informative
due to abundance of repetitive sequences (Supplementary
Figure S1).

The second PHG construction step populates the database
with sequence data from diverse accessions across the reference
ranges (Supplementary Figure S1). Pre-processed exome capture
g.vcf files for the WC65 accessions, including 58 T. aestivum acces-
sions, three Aegilops tauschii accessions, three Triticum turgidum
subsp. durum wheat cultivars, and one T. turgidum subsp. dicoccum

accession (Supplementary Table S2) generated by GATK

(McKenna et al. 2010) were loaded into the PHG, creating a data-

base of 6,705,472 haplotypes. This set of haplotypes should be

representative of the haplotypic diversity in the wheat breeding

programs within the United States.
The third PHG construction step creates consensus haplotypes

for the reference ranges, using the diversity data from the WC65

accessions (Supplementary Figure S1). This step collapses the

raw haplotypes into consensus haplotypes using a user-defined

maximum divergence (mxDiv) parameter, which was set to

0.0001 for wheat. This parameter results in the clustering of raw

haplotypes that contain <1 variant within 10,000 bp into a com-

mon haplotype. The value of the mxDiv parameter was based on

prior diversity estimates in wheat (Akhunov et al. 2010; Jordan

et al. 2015), and aimed at retaining a manageable number of hap-

lotypes per reference range as described in Jensen et al. (2020). In

addition to the mxDiv parameter, we set minTaxa ¼ 1, which

retains haplotypes present in only one accession and facilitates

the imputation of rare haplotypes. Using these parameters, a to-

tal of 712,733 consensus haplotypes were detected, which is ap-

proximately 6.7 haplotypes per informative reference range,

similar to �5 haplotypes per reference range reported in the sor-

ghum PHG (Jensen et al. 2020).

Imputation using the Wheat PHG
For imputation using PHG, low coverage sequence data (fastq)

was aligned to the consensus haplotypes stored in the PHG data-

base (Supplementary Figure S1) using minmap2 (Li 2018) pro-

gram. A Hidden Markov model was used to infer the paths

through the PHG that match the mapped reads while determin-

ing the missing haplotypes. The variants were imputed using the

haplotype structure stored in the database, and exported as a vcf

file. By using minReads ¼ 0 parameter, variant calls were im-

puted for all variable positions in the Wheat PHG database. The

resulting vcf file for the imputed genotypes were compared to

high quality variant information for imputation accuracy as de-

scribed above for each dataset.

Phenotypic regression of imputed genotypes
We used a family of 75 RILs from the spring wheat NAM panel

(Jordan et al. 2018), where both parents were included into the

Wheat PHG database, to assess the effect of imputation on QTL

mapping applications. We filtered the 1.457 million genotypes

from PHG imputation of the GBS data generated for these 75 RILs

to retain variants that segregate between the parental lines, and

selected allele with frequencies ranging between 0.35 and 0.65 in

the RIL population. These variants were subsequently thinned

using PLINK (Purcell et al. 2007) to remove markers that had an r2

� 0.6 within a 50 SNP window, stepping 10 SNPs at a time. The

resulting set of 9806 markers with no missing data was used for

stepwise regression (SR) mapping performed with the ICIM soft-

ware v.4.1.0.0 (Meng et al. 2015) with markers entering and exiting

the model with P-value < 0.0001. The estimates of the total num-

ber of CrossOvers (TCO) and the distal CrossOvers (dCO) were

taken from the previous analyses of the spring wheat NAM popu-

lation for family NAM1 (Jordan et al. 2018). Heading dates (HDs)

were measured at three locations for two growing seasons

(Montana, South Dakota, Washington) for the 75 RILs and three

checks. Best linear unbiased predictions for each line were esti-

mated using the following linear mixed model with lmer package

in R:
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HD ¼ yearþ location þ lineþ year ðlocationÞ þ line� year;

where location, year, and location nested within year are fixed
variables, and the line and line-by-year interaction terms are ran-
dom variables.

Results
The Wheat PHG database development
A Wheat PHG database was created using whole-exome capture
data from a set of 65 wheat accessions, WC65 (Supplementary
Table S2) contributed by the major US wheat breeding programs
and the parental lines used for the genetic analyses of the yield
component traits in WheatCAP (www.triticeaecap.org). This set
of accessions was selected from a larger panel of nearly 250
wheat cultivars assembled in coordination with the US wheat
breeding programs to build a genomic resource to be used as a
reference panel for genotype imputation. This diverse set of 65
accessions is comprised of mostly spring and winter bread wheat
cultivars, but it also included three accessions of the diploid an-
cestor of the wheat D genome, A. tauschii (accessions TA1615,
TA1718, and TA1662/PI603230), and four accessions of tetraploid
wheat (three T. turgidum subsp. durum wheat cultivars Langdon,
Ben, and Mountrail and one domesticated emmer, T. turgidum
subsp. dicoccum, accession PI41025).

For constructing the PHG, the wheat genome was split into a
set of informative reference ranges that represent the high confi-
dence gene models in the IWGSC RefSeq v.1.1 (IWGSC 2018). By
using the predicted gene models to define reference ranges, we
aimed to reduce the impact of erroneous genotype calling associ-
ated with the misalignments of sequence reads to the repetitive
portion of the wheat genome (Wicker et al. 2018) on the estima-
tion of LD and detecting haplotype blocks. A total of 106,484 ref-
erence ranges spanning all 21 chromosomes were defined
(Supplementary Figure S1 and Table S3), with an average of 5,070
reference ranges per chromosome; chromosome 4D contains the
lowest (3,612 ranges) and chromosome 2B harbors the highest
(6,221 ranges) number of reference ranges.

Using the WC65 accessions to populate the Wheat PHG data-
base, we discovered 1,473,670 SNPs and small-scale indels across
the 106,484 reference ranges, of which 1,457,321 are high quality,
bi-allelic SNPs (Supplementary Table S3). The inclusion of three
diploid A. tauschii accessions into the panel increased the number
of variable sites detected in the D genome lineage, which is the
least polymorphic genome in bread wheat (Wang et al. 2013;
Jordan et al. 2015; He et al. 2019). Excluding the variants from A.
tauschii, we found that 161,226 (31%) sites in the D genome were
monomorphic among the bread wheat cultivars. Similarly, we
found that 31,486 SNPs (7%) in the A genome and 32,228 SNPs
(6%) in the B genome are contributed by the domesticated emmer
and durum lines, and are monomorphic in hexaploid wheat.
These private SNPs explain the high levels of divergence between
the domesticated emmer and A. tauschii accessions from the
hexaploid wheat lines (Figure 1A). The patterns of genetic diver-
sity and allele frequency distribution in the D genome compared
to those in the A and B genomes were consistent with the known
population bottleneck cased by polyploidization (Table 1): (1) di-
versity mean estimates for the D genome were <2.3-fold that of
the A and B genomes (pD ¼ 0.076, pA ¼ 0.175, and pB ¼ 0.182;
Table 1), (2) the estimates of Tajima’s D were lower in the D ge-
nome than in the A and B genomes (Tajima’s DD ¼ –2.19,
Tajima’s DA ¼ –0.67, and Tajima’s DB ¼ –0.55, Table 1), (3) the
mean MAFs were greater in the A and B genomes than in the D

genome (MAFA ¼ 0.12, MAFB ¼ 0.12, and MAFD ¼ 0.05), and (4) LD
drops to half of its initial value (r2 � 0.33) at 20 Mb in the D ge-
nome, whereas in the A and B genomes LD drops to the same
level at 12 and 10 Mb, respectively (Table 1, Figure 1B).

The accuracy and the rate of genotype imputation are affected
by the proportion of shared genetic ancestry among individuals
in a population (Browning and Browning 2013). For each
WheatCAP parental line included in the Wheat PHG, we esti-
mated the length of genomic segments sharing IBD with other
lines in the panel. On average, the pairs of parents had 451 Mb
(�3%) of IBD segments (Supplementary Table S4), suggesting dis-
tant relationships among the WheatCAP parental lines. This re-
sult was consistent with the high correlation (r¼ 0.64) observed
between the genetic distance and IBD. However, the estimates of
the total length of IBD segments among cultivars were quite vari-
able (Figure 1C). For example, in cultivars Prosper from North
Dakota and Shelly from Minnesota, the length of shared IBD seg-
ments was nearly 1.29 Gb (8.6%), whereas hard winter wheat cul-
tivars Lyman (South Dakota) and Overley (Kansas) shared only
128 Mb (0.85%) of IBD segments. The average length of IBD seg-
ments shared by the distantly related durum wheat and domesti-
cated emmer parents was only 57.6 Mb. Across all breeding
programs, we detected 556 regions sharing IBD, with an average
IBD segment length of 12.2 Mb. Over half (53%) of the IBD seg-
ments overlapped with a segment from at least one other breed-
ing program, translating to more than 1.68 Gb of the genome
shared between any two wheat breeding programs. This estimate
includes 1.49 Gb of shared IBD in the D genome (89%), while only
86.4 Mb and 105.7 Mb of IBD with other breeding programs were
detected in the A and B genomes, respectively. The genomic seg-
ments sharing IBD with most of the wheat lines were located on
chromosomes 7D (568–571 Mb) and 3D (496.6–505 Mb), which
were common to seven breeding programs.

The WC65 dataset included 21 hard red winter wheat cultivars
from the US Great Plains region (Supplementary Table S2).
Pairwise comparisons among these lines showed that, on aver-
age, they share 416 Mb of IBD segments, with an average IBD seg-
ment length of 13 Mb, and nearly 83% of all shared IBD regions
are located in the D genome (Supplementary Table S5). This find-
ing is consistent with the lack of diversity among breeding lines
in the D genome (Chao et al. 2010) and the high levels of shared
ancestry among the lines from the US Great Plains’ breeding pro-
grams.

Genotype imputation using the Wheat PHG
We used several low-coverage sequencing datasets to assess the
imputation performance of the Wheat PHG (Supplementary
Table S2). First, we used a set of 75 spring and winter wheat lines,
DS75, from the US wheat breeding programs sequenced using the
whole-exome capture approach (Krasileva et al. 2017; He et al.
2019) to mimic a low-coverage sequencing experiment. We
down-sampled the raw unmapped Illumina PE reads generated
for each accession to create datasets with three levels of se-
quence coverage depths (0.01�, 0.1�, and 0.5�) for the regions
targeted by the exome capture assay. The accuracy of imputation
achieved using the Wheat PHG was estimated by comparing the
concordance of imputed genotype calls with the genotype calls
from the HQ-SNP set generated using the 90K iSelect array (Wang
et al. 2014) and the high-coverage (20–30� coverage) exome se-
quencing.

On average, using 0.5� coverage of DS75, we achieved 96.6%
imputation accuracy, ranging from 95% to 98% among lines
(Figure 2A, Table 2). Five- and 50-fold reduction in the depth of
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read coverage for DS75 did not result in a substantial reduction
in the accuracy of imputation. The mean accuracy of PHG impu-
tation was 95.7% (93–98% range) with 0.1� coverage depth, and
91.7% (87–98% range) with as little as 0.01� coverage depth
(Figure 2A, Table 2). These results suggest that the imputation
method in the PHG could effectively use 0.01� exome coverage
data to adequately capture the haplotypic diversity of the DS75
panel to achieve �92% imputation accuracy. The imputation ac-
curacy of DS75 varied among the wheat genomes, likely due to
genome-specific differences in the extent of LD and haplotypic di-
versity (Jordan et al. 2015). At 0.01� coverage depth, the accuracy
of genotype imputation in the D genome was 95.3%, which was
5% and 5.4% more accurate [P-value(ANOVA) < 2 � 10�16] than im-
putation in the A (90.3%) and the B genomes (89.9%), respectively
(Table 3; Figure 2B).

We compared the performance of the Wheat PHG to one of
the commonly used low-coverage imputation methods

implemented in Beagle5.0 (Browning and Browning 2013). For this
purpose, the WC65 panel of accessions included into the Wheat
PHG database was used as the reference panel, and an indepen-
dent set of DS75 wheat cultivars from the US wheat breeding pro-
grams was used as the inference panel. Overall, Beagle imputed
missing genotypes with 88.3% accuracy for DS75 at 0.01� cover-
age (ranging from 76% to 94%), and 92.1% (ranging from 84% to
95%) at 0.1� coverage (Figure 2A, Table 2). Direct comparisons
of imputation methods show PHG imputation statistically out-
performed Beagle imputation by > 3.4% at both coverage levels
[P-value 0.1� (t-test) ¼ 2.0 � 10�16; P-value 0.01� (t-test) ¼ 1.9 � 10�14).

Similar to the imputation of DS75 with PHG, Beagle imputed
the D genome with higher accuracy [94.6%; P-value (ANOVA) < 2 �
10�16] than both the A (85.4%) and B (85.5%) genomes (Table 3).
The higher extent of LD in the D genome appears to contribute to
more accurate genotype imputation compared to that in the A
and B genomes using exome capture data, which show faster
rates of LD decay and lower proportions of the genome sharing
IBD segments in the panel used to build the PHG database.

We compared PHG imputation performance for four cultivars
(Duster, Overley, NuPlains, and Zenda) in the DS75 panel that
were included in PHG database construction, with respect to the
other 71 accessions not included in the database construction,
and found the four cultivar’s imputation accuracy was statisti-
cally higher (ANOVA for different levels of sequence coverage: P-
value 0.5� ¼ 0.0008; P-value 0.1� ¼ 9.2 � 10�5; P-value 0.1� ¼ 3.8 �
10�6) than for other cultivars at all levels of sequence coverage
(Supplementary Figure S2a). No similar relationship between the
presence of specific haplotypes in the reference panel and
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Figure 1 Genetic diversity of WC65 accessions of wheat and its diploid and tetraploid relatives used for developing the Wheat PHG. (A) Neighbor-joining
tree of WC65 accessions used for constructing the Wheat PHG. (B) The rate of LD decay in the A, B, and D genomes of wheat. (C) The length of pair-wise
IBD between the parental lines from different breeding programs used in WheatCAP.

Table 1 Estimates of genetic diversity (p), minor allele frequency
(MAF), Tajima’s D and linkage disequilibrium in the WC65
population used for constructing the Wheat PHG

Diversity statistic A genome B genome D genome

No. SNPs 430,050 504,260 523,011
MAF 0.116 0.122 0.050
p (per bp) 0.175 0.182 0.076
Tajima’s D –0.673 –0.552 –2.192
LDa (r2 � 0.33) 12.2 Mb 9.8 Mb 20.0 Mb

a Distance at which LD drops to half of its initial value (r2 � 0.33).
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Table 2 Comparison of imputation accuracy between PHG and Beagle using exome capture data

DS75 accession PHG 0.5� PHG 0.1� PHG 0.01� Beagle 0.1� Beagle 0.01�

Arthur 95.4% 93.8% 88.5% 90.4% 86.4%
Alice 96.7% 95.8% 91.5% 92.3% 88.9%
Antero 97.1% 96.4% 91.9% 93.6% 89.5%
Bess 96.0% 94.5% 89.2% 91.1% 86.6%
Branson 96.0% 94.4% 87.7% 91.3% 87.5%
Bolles 96.8% 95.4% 90.1% 88.6% 93.3%
BrawlCLPlus 96.3% 94.9% 91.3% 92.5% 88.6%
Byrd 96.8% 96.0% 92.7% 93.4% 88.9%
Camelot 98.0% 98.2% 97.5% 92.4% 88.0%
Danby 96.6% 95.8% 92.2% 93.4% 88.5%
Decade 96.3% 95.3% 91.1% 92.5% 88.7%
Denali 96.4% 95.5% 92.0% 92.2% 88.2%
DoubleCLPlus 96.9% 95.8% 90.6% 93.1% 89.0%
Dustera 97.7% 97.7% 97.1% 89.3% 93.0%
Expedition 97.0% 96.1% 92.7% 93.5% 89.0%
Forefront 96.3% 95.0% 89.6% 88.0% 91.7%
Freeman 96.4% 95.6% 91.4% 92.8% 87.5%
Glacier 96.4% 94.6% 88.2% 91.7% 87.4%
Gallagher 96.4% 95.2% 89.9% 91.3% 86.7%
Goodstreak 97.2% 96.0% 91.1% 93.7% 88.9%
Hilliard 95.9% 94.3% 89.0% 91.2% 86.9%
Hunter 95.2% 93.9% 87.8% 89.7% 85.7%
Hatcher 96.0% 95.4% 90.3% 92.4% 88.2%
Ideal 96.1% 95.7% 91.2% 91.6% 87.7%
Jamestown 96.1% 93.2% 89.7% 91.2% 86.0%
Jagger 95.9% 94.4% 90.6% 84.2% 75.6%
Jagalene 97.6% 98.0% 98.1% 93.0% 87.8%
Jerry 96.8% 95.8% 91.5% 93.3% 88.8%
KS061193K-2 97.5% 97.8% 97.9% 93.6% 88.5%
KS090387K-20 97.6% 97.9% 96.2% 92.1% 87.3%
KS13H-9 96.9% 96.0% 90.7% 93.1% 88.7%
KS14H-180-4 97.0% 96.2% 91.1% 93.0% 88.8%
KanMark 98.1% 98.2% 97.1% 93.3% 89.5%
Kharkof 96.2% 94.5% 90.4% 92.6% 88.6%
LCSChrome 96.3% 95.5% 90.1% 91.9% 86.9%
Linkert 97.0% 96.0% 91.5% 90.1% 93.8%
Lonerider 97.6% 95.9% 91.0% 92.6% 87.7%
Mace 96.7% 95.6% 90.2% 93.1% 88.7%
Mattern 96.6% 95.4% 91.9% 92.5% 87.9%
McGill 96.7% 95.6% 90.9% 93.0% 89.0%
Millenium 96.8% 95.8% 91.6% 92.8% 88.7%
Mott 96.4% 95.4% 90.4% 93.2% 89.6%
NE10589 96.8% 96.4% 91.9% 93.1% 88.1%
NUPlainsa 97.9% 98.0% 96.7% 93.7% 89.7%
NW13493 96.6% 95.6% 90.7% 92.6% 87.4%
OK11D25056 96.8% 95.4% 91.2% 92.9% 88.9%
OK12716Red 96.5% 95.5% 90.9% 92.5% 87.4%
OK13209 96.9% 95.7% 91.0% 93.0% 88.7%
OK13621 96.9% 95.9% 91.5% 92.2% 87.3%
OK11709W-139122 96.7% 95.8% 91.9% 92.8% 89.2%
Oahe 96.4% 95.4% 91.1% 92.6% 88.9%
Overleya 97.2% 97.3% 97.2% 89.4% 92.9%
Pembroke 95.1% 93.3% 87.7% 89.4% 85.3%
Panhandle 96.2% 95.1% 90.4% 92.2% 87.4%
Prevail 96.5% 95.4% 89.8% 91.8% 89.7%
Redfield 96.5% 95.6% 90.8% 92.9% 88.5%
Robidoux 96.9% 95.9% 91.5% 93.2% 89.6%
SD08080 96.7% 95.7% 90.7% 92.7% 88.5%
Scout66 96.9% 95.9% 92.4% 93.7% 89.6%
Snowmass 96.6% 95.7% 91.0% 93.0% 88.3%
TAM114 96.7% 95.8% 92.0% 92.8% 89.3%
TAM203 96.1% 95.2% 91.1% 91.5% 86.9%
TAM204 95.8% 94.9% 90.9% 92.1% 87.7%
TAM303 96.0% 94.9% 91.6% 90.9% 87.1%
TAM304 96.7% 95.2% 90.1% 92.3% 88.6%
TAM305 96.4% 95.6% 90.9% 91.9% 87.1%
Traverse 96.7% 95.1% 90.3% 90.5% 86.6%
Tribute 95.6% 94.1% 87.0% 89.6% 85.0%
TX11A001295 96.9% 96.2% 93.8% 92.4% 87.4%
TX12M4068 96.5% 95.2% 91.6% 92.0% 87.4%
WB-Redhawk 97.7% 97.6% 98.1% 93.0% 88.6%

(continued)
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imputation accuracy was observed for Beagle. We further ex-
plored this relationship by analyzing genotype imputation results
in the cultivar Jagger, which showed a substantial reduction in
imputation accuracy in the low sequence coverage datasets (0.1�
and 0.01� coverage) imputed using Beagle (Supplementary
Figure S2a). We assumed that one of the likely factors contribut-
ing to the decreased imputation performance of Beagle in the cul-
tivar Jagger was the presence of the wild-relative introgression
from Aegilops ventricosa on chromosome 2A (Cruz et al. 2016).
Because cultivar Overley, which was used to build the PHG data-
base, also carries this A. ventricosa introgression (Cruz et al. 2016),
we could evaluate the impact of the presence of the rare intro-
gressed haplotype in both the PHG database and the Beagle’s ref-
erence panel on imputation accuracy. The chromosome-by-
chromosome assessment of imputation accuracy for cv. Jagger in
the 0.01� coverage dataset showed modest accuracy (90%) for
chromosome 2A using PHG. However, for the same chromosome,
the imputation accuracy of Beagle reached only 63%
(Supplementary Figure S2b). The accuracy of Beagle imputation
was also low for other chromosomes (2D, 6A, 7A) (Supplementary
Figure S2b), which suggests that cv. Jagger likely carries other
regions with unique haplotypes (Kippes et al. 2018; Walkowiak
et al. 2020) poorly represented in the reference set used for Beagle
imputation. For the same three chromosomes, the accuracy of
PHG imputation was higher than that obtained using Beagle.

Imputation accuracy with reduced coverage sequencing
data
To this point, we tested the imputation accuracy using the same
type of genomic data (whole-exome capture) as was used to pop-
ulate the PHG database. We also evaluated the utility of the
developed PHG database for imputing genotypes using two cost-
effective complexity-reduced sequencing approaches, GBS
(Elshire et al. 2011; Saintenac et al. 2013) and whole-genome skim-
seq (Malmberg et al. 2018). We imputed a population of 70
independent accessions (GBS70) that were sequenced with GBS
technology, to check imputation accuracy using sequencing
reads derived from part of the genome that are not necessarily
representative of the reference ranges in the database. Within
the GBS70 accessions are 18 accessions that were sequenced at
�1� the GBS target space and 52 sequenced 2.5� GBS target
space. As anticipated, an increase in coverage increased imputa-
tion accuracy by 1.7% using GBS sequencing [Figure 2B, P-value

(ANOVA) < 4.2 � 10�09]. However, the imputation accuracy of 2.5�
coverage GBS reads, which represents nearly 500�more sequenc-
ing reads per sample than DS75 at 0.01� was still reduced by
3.1% (Table 4), suggesting that matching sequencing reads de-
rived from the reference ranges significantly increases imputa-
tion accuracy, even at substantially lower coverage depth.

In addition to the 70 independent accessions characterized by
GBS that were not used for PHG database construction, we uti-
lized GBS reads generated for a set of 2,100 NAMgbs RILs from
the spring wheat NAM panel (Jordan et al. 2018), and performed
genotype imputation at 1.4 million variable sites. The common
parent of these NAM RILs, cv. Berkut, was included into the
Wheat PHG, and therefore this population does not necessarily
represent an independent dataset for imputation as the GBS70
population did. However, for three families comprising the wheat
NAM population, both parents were represented in the Wheat
PHG, which allows us to investigate imputation accuracy for a set
of RILs, which had either both or only a single parental haplotype
being represented in the PHG database.

The mean accuracy of imputation across the 2100 RILs was
89.2%, ranging from 78% to 92% across individual lines
(Figure 2B). Average imputation accuracies by families ranges
from 88.3% to 90.4%, and the three families with both parents
represented in the PHG database were among the top four most
accurately imputed families (Supplementary Table S6). Even
though there is only a 0.9% reduction [90.1% both parents; 89.2%
single parent in database; P-value (ANOVA) < 2 � 10�16] in mean
imputation accuracy for lines with both parents in the database,
vs. those with one parent, all lines having one or two parents rep-
resented in the database were imputed more accurately (3.2%
and 2.3%, respectively) than the 18 independent lines from GBS70
with the same depth of coverage, whose accuracy was 86.9%
(Table 4). These estimates of imputation accuracy for the semi-
dependent (representation of parents in the PHG database)
NAMgbs RILs were slightly lower (2.5%) than those observed for
the imputed genotypes in the 0.01� DS75 exome capture data,
and likely explained by the relatively small overlap (�5%) be-
tween the sites in the GBS and exome capture datasets (Jordan
et al. 2015). Overall, these results indicate that a PHG database
created by a panel of independent wheat lines re-sequenced by
exome capture assay provides accurate imputation (�87%) on
the inference populations created by complexity reduced se-
quencing using GBS, as long as the coverage is �1� GBS target
size, and imputation is even more accurate for lines that share
haplotypes represented in the PHG database.

We also evaluated the Wheat PHG imputation for a set of 24
NAM RILs genotyped using the whole-genome skim-seq approach
(NAMskim). The genomic libraries generated for this set of RILs
from the spring wheat NAM population (Jordan et al. 2018; Blake
et al. 2019) were sequenced on an Illumina sequencer (2 � 150 bp
run) to provide �0.1� genome coverage. The accuracy of PHG-
imputed genotypes in the NAMskim dataset (85.3%) was lower
than that obtained for genotypes in either the DS75 or 1x
NAMgbs datasets (Table 4). In fact, this estimate was 3.9% lower

Table 2. (continued)

DS75 accession PHG 0.5� PHG 0.1� PHG 0.01� Beagle 0.1� Beagle 0.01�

Wesley 97.0% 95.9% 91.9% 93.9% 89.9%
Yellowstone 95.8% 94.7% 91.1% 94.7% 93.2%
Zendaa 97.7% 97.7% 97.5% 93.1% 88.4%
Average 96.6% 95.7% 91.7% 92.1% 88.3%

a Cultivars used in PHG database construction.

Table 3 The accuracy of DS75 imputation in different wheat
genomes

Wheat genome PHG (0.1�)a Beagle (0.1�)a PHG (0.01�)a Beagle (0.01�)a

Total 95.7% 92.1% 91.7% 88.3%
A 95.1% 91.2% 90.3% 85.4%
B 94.9% 90.4% 89.9% 85.5%
D 97.4% 96.6% 95.3% 94.6%

a Accuracies by approach are comprised of matching germplasm, EC:
n¼ 75, Beagle: n¼75.
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for the same set of RILs [P-value (t-test) < 2.7 � 10�13] imputed
from the NAMgbs dataset. This lower accuracy likely is associ-
ated with a lower proportion of skim-seq reads, mostly repre-
sented by reads from the repetitive regions, uniquely mapped to
the wheat genome compared to the proportion of uniquely
mapped reads from the exome capture and GBS datasets, which
are enriched for the low-copy genomic regions (Saintenac et al.
2013; Jordan et al. 2015). The accuracy of imputation varied across
different SNP frequency classes. For SNPs with MAF > 0.1, the ac-
curacy of imputation improved by 4% for all NAMgbs RILs, and
by 7.5% for NAMskim genotypes (Table 5). The accuracy reached
nearly 90% for NAMskim and 92.5% for NAMgbs datasets when
the MAF were �0.2 (Table 5, Figure 2C).

Genetic analyses of trait variation using the imputed
genotypes
The ability to accurately impute genotypes across the genome in
low-coverage sequencing datasets provides a cost-effective
means for advancing the genetic dissection of trait variation. We
used the imputed PHG genotypes to assess the genetic contribu-
tion to HD variation in a NAM family previously used for studying
the genetics of recombination rate variation in wheat (Jordan
et al. 2018). The NAM1 family was chosen as both parents were in-
cluded into the PHG database, and imputation accuracy was the
highest among all NAM families at 90.4% (Supplementary Table
S6). A SR was applied to identify variants associated with pheno-
typic variation. Before mapping, co-segregating redundant
markers were removed, resulting in nearly 10,000 markers with
no missing data. The SR method identified 11 SNPs together
explaining 90% of the variance in HD, which was measured over
2 years at three locations (Figure 3, Supplementary Table S7).
Among these SNPs are loci with modest effect sizes located on
the long arms of chromosomes 5A and 5D, within 10 Mb from the
Vrn-A1 and Vrn-D1 loci, which play a major role in the regulation
of flowering in wheat (Distelfeld et al. 2009). In addition, signifi-
cant SNPs on chromosomes 1B and 1D were mapped to the
regions within 50 Mb of the Elf-3 gene, which is associated with
the transition from vegetative to reproductive growth in wheat
(Alvarez et al. 2016; Zikhali et al. 2016).

We also used the imputed genotypes to revisit the genetic
analysis of meiotic crossover rate variation in the wheat NAM
population (Jordan et al. 2018; Blake et al. 2019). In the previous
study, using a limited number of SNPs genotyped using the 90K

iSelect array and GBS, we performed SR analysis and identified 15
and 12 SNPs associated with variation in the TCO and the num-
ber of dCO, respectively (Jordan et al. 2018). The identified SNPs
explained 48.6% of the variation for TCO and 41% of the variation
for dCO. Using the PHG imputed genotypes, we mapped 16 SNPs
that together explained 91% of the variance for TCO per line and
12 SNPs explaining 80% of the variance for dCO (Figure 3,
Supplementary Table S7). Compared to the previous study, SR
analyses based on the PHG imputed SNPs detected additional loci
with smaller effects on crossover rate (Jordan et al. 2018). As a re-
sult, the average effect size estimates for TCO and dCO were 2.5
COs and 1.5 COs, respectively. These estimates were lower than
the previously reported average effect sizes of 3.36 COs for TCO
and 2.3 COs for dCO (Jordan et al. 2018). Taken together, these
results indicate that the increase in marker density after imputa-
tion using the Wheat PHG helped to identify new loci with a
broader range of effect sizes that together explain a higher pro-
portion of genetic variance compared to the previous study
(Jordan et al. 2018).

Discussion
We constructed a Wheat PHG database using wheat lines from
the major US breeding programs and demonstrated that PHG
combined with inexpensive low-coverage genome sequencing
could be used to impute genotypes with high accuracy, sufficient
to identify variants with smaller effects and support high-
resolution mapping studies. Our analyses suggest that the Wheat
PHG has the potential to effectively utilize community-generated
whole-exome capture datasets, currently including thousands of
diverse wheat accessions from different geographic regions
(Molero et al. 2018; He et al. 2019; Pont et al. 2019; Scott et al. 2021),
to create a global resource for imputing genotypes. The imputa-
tion accuracy provided by the PHG in populations genotyped us-
ing skim-seq, GBS, as well as low-coverage exome sequencing
approaches varied, but overall were comparable, indicating that
the marker density in the large populations of wheat lines previ-
ously genotyped using these methods could be substantially in-
creased by imputation with this newly developed Wheat PHG
tool. In addition to improved imputation accuracy, another at-
tractive feature of the Wheat PHG for imputation is its ability to
directly use sequence data in the fastq format, which signifi-
cantly simplifies and reduces time required for data processing.
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Figure 2 The accuracy of imputation using the Wheat PHG. (A) The impact of sequence coverage and the method of imputation on accuracy for DS75.
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imputation for alleles with different minor allele frequency for matched samples using GBS and skim-sequencing, n¼24.
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The accuracy of PHG imputation compared favorably with the
commonly used imputation tool Beagle v.5.0 (Browning and
Browning 2013), which imputed genotypes with 3.3% and 3.6%
lower accuracy at 0.01� and 0.1� genome coverage levels, re-
spectively. The Wheat PHG showed a substantial improvement in
accuracy (10–15%) compared to Beagle for the cultivar Jagger that
carries introgression from a wild relative that was represented in
only one accession in the PHG database, indicating that PHG is
more effective at utilizing the rare haplotypes in the reference
panel than Beagle. In previous studies, imputation of exome cap-
ture data with Beagle in populations genotyped using the 90K
SNP array and GBS was 93–97% (Jordan et al. 2015) and 98%
(Nyine et al. 2019), respectively. These estimates of accuracy are
slightly higher than those obtained in our current study, but
overall are comparable, and likely associated with filtering ap-
plied to reduce the proportion of missing data in the imputed
datasets (Nyine et al. 2019), and with the inclusion of more com-
mon variants from the array-based genotyping methods.

Compared to the imputation accuracy of sorghum (94.1%) and
maize (92–95%) PHGs (Jensen et al. 2020; Valdes Franco et al.
2020), our estimates of accuracy were slightly lower and are likely
caused by genotyping errors associated with the misalignment of
short reads to the more complex, highly repetitive, allopolyploid
wheat genome. The higher imputation accuracy in the low-
coverage DS75 datasets from the whole exome capture compared
to the accuracy of whole genome skim-seq datasets, which are

mostly composed of reads from the repetitive regions of the
wheat genome, supports this explanation.

Our results show a reduction in the accuracy of imputation in
the regions preferentially located outside of the reference ranges,
for example in the regions around the PstI sites sequenced by
GBS. We show that imputation accuracy within the reference
ranges with lower depth of coverage, for example in the DS75
dataset providing at 0.01� coverage of the exome capture
regions, is higher (92%) compared to PstI sites with higher se-
quence coverage, �1� in the GBS database (89%), even for acces-
sions that are included into the PHG database. One possible
approach to improve imputation accuracy for GBS datasets could
be to create reference ranges around the GBS-associated PstI
sites. However, this may also increase the proportion of ranges
located within the repetitive portion of the wheat genome and in-
crease the chance of read misalignment, reducing imputation ac-
curacy.

The imputation accuracy among different allele frequency
classes improves with an increase in the allele frequency and is
higher for a reference allele than for an alternative allele.
Consistent with these expectations, the accuracy of imputation
in the GBS dataset improved from 87.1% for SNPs with MAF < 0.1
to 91.3% for SNPs with MAF > 0.4, and in the skim-seq dataset
from 80.2% for SNPs with MAF < 0.1 to 89.0% for SNPs with MAF
>0.4. Previous studies showed that an increase in the reference
population size also increases the probability of capturing rare

Table 4 Comparison of imputation using complexity reduced sequencing technologies

Dataset GBS70 NAMgbs NAMskim

Coverage 1� 2.5� 1� 1� 0.1�
Avg. reads/sample 1.85 million 5 million 1.85 million 1.85 million 6.1 milliona

Database status Independent Independent Semi-dep. Dependent Semi-dep.
Imputation accuracy 86.9% 88.6% 89.2% 90.1% 85.3%

a Paired-end sequencing.

Table 5 Relationship between minor allele frequency and the accuracy of imputation for reduced complexity semi-dependent datasets

Minor allele frequency (MAF)

0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 >0.1a

No. sitesb 1,029,330 156,251 97,013 73,001 66,296 392,561
NAMgbs accuracy 0.8707 0.9226 0.9168 0.9078 0.9126 0.9134
NAMskim accuracy 0.8015 0.8560 0.8782 0.8789 0.8900 0.8760
Matchedc NAMgbs Acc. 0.8763 0.9172 0.9102 0.8994 0.8992 0.9084

a Summary of all groups where MAF > 0.1.
b The sites within each MAF frequency bin were determined by frequency in the PHG database.
c Data from NAMgbs for the same 24 lines sequenced for NAMskim.
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alleles and substantially improves the imputation accuracy of

rare variants (Shi et al. 2017; Das et al. 2018). Our results suggest

that the Wheat PHG appears to be more effective at utilizing rare

haplotypes included into the reference panel for genotype impu-

tation than the commonly used low-coverage imputation method

from Beagle. This was demonstrated by imputing genotypes on

chromosome 2A, which carries an introgression from A. ventricosa

in cultivar Jagger (Cruz et al. 2016). The inclusion of genotyping

data from the cultivar Overley, which also carries this A. ventri-

cosa introgression, into the PHG database was sufficient for accu-

rate imputation in Jagger. In spite of including genotyping

data from cultivar Overley into the reference panel, Beagle impu-

tation of chromosome 2A genotypes in Jagger was lower com-

pared to PHG. Further efforts aimed at broadening the diversity of

accessions in the Wheat PHG, including wheat lines carrying

known introgressions from wild relatives, will be needed to im-

prove the utility PHG tool for genotype imputation in wheat

germplasm.
The application of imputed genotypes to the genetic analyses

of trait variation in the wheat NAM population showed that an

increase in marker density increases the number of loci associ-

ated with trait variation and detects alleles that have smaller

effects on phenotypes (e.g. recombination rate) than those previ-

ously detected using lower density marker sets. The increase in

the number of significant loci also resulted in a higher proportion

of genetic variance (80–91%) in recombination rate and HD being

explained, suggesting that the imputed genotypes are better at

capturing the genetic architecture of these traits, and have the

potential to identify more adaptive and beneficial genetic targets

in breeding programs.

Data availability
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